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Abstract

We give a brief review of hysteresis in viscoelastic polymers. The efforts surveyed
range from phenomenological to molecular modelling with applications involving recent
efforts on elastomers to biotissue.

1 Introduction

In control and systems theory, delay or hereditary systems or systems with memory (hys-
teresis) have played an important role for many years because of the early realizations by
Minorsky and others [40, 41, 56, 57, 58, 60] that feedback design based on dynamics wherein
one ignores any delays may fail catastrophically to stabilize or control a system in which
delays or hysteresis are present in the dynamics. This is true whether the hysteresis is a
fundamental part of the underlying dynamics or a part of the input or control operator.
For the latter there is a growing body of literature [11, 12, 13, 45, 54, 68] on the Preisach
and related theories for hysteretic control input such as arises in smart material systems
[27, 39, 64]. Applications in which delays and hysteresis play a basic role in the underly-
ing dynamics include sustained efforts in biology with early efforts employing delay systems
[1, 2, 16, 17, 28, 29, 30, 31, 32, 42, 51, 53, 55, 62] and more recent investigations involving
hysteretic probabilistic structures [5, 7] as well as classical materials and electromagnetics
research (see [8] and the references therein). These applications drove a substantial amount
of mathematical and computational research on hysteretic systems in the last half of the
20th century, e.g., see [26, 40, 41, 46, 47] among the many books, research monographs, and
research articles written. Here we shall focus on the delays or hysteresis arising in the fun-
damental dynamics of the systems to be stabilized or controlled. In particular we consider
viscoelastic materials that are polymeric in nature. This includes a wide range of materials
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of current importance such as (rubber or silicone based) filled elastomers and all types of
biotissue (soft tissue, ligaments, cartilage, etc.).

2 Viscoelasticity

The mathematical modelling of viscoelasticity (sometimes also loosely referred to as hystere-
sis) in materials using ideas from elasticity has attracted the attention of a large number of
investigators over the past century. Among significant contributors (see the many references
in [33, 34, 35, 37, 38, 52, 59, 61, 65, 67, 69, 70]) have been some of the true giants from the
fields of engineering and material sciences. One of the most widely used empirical models for
viscoelasticity in materials is the Boltzmann convolution law [22, 35, 37, 38, 69], one form
of which is given in equation (1)

σ(t) = ge(ε(t)) + CD ε̇(t) +

∫ t

−∞
Y (t− s)

d

ds
gv (ε(s), ε̇(s)) ds, (1)

where ε is the infinitesimal strain, Y is the convolution memory kernel, and ge and gv are
nonlinear functions accounting for the elastic and viscoelastic responses of the elastomers,
respectively; for summaries and further references, see Chapter 2 of [38] as well as [22]. This
form of model, when incorporated into force balance laws, results in integro-partial differential
equations which are most often phenomenological in nature as well as being computationally
challenging both in simulation and control design. This stress-strain law implies that the
stress depends not only on the current strain and strain rate but also on the history of
the strain and the strain-rate. It is very important to note that the stress-strain law (1)
contains various standard internal strain or internal variable formulations as special cases.
The anelastic displacement field (ADF) models of Lesieutre [48, 49] for composite materials
exhibiting both elastic and anelastic displacement fields are formulated on the assumption
that the host elastic material contains anelastic materials with internal strains ε1 which are
elastic strain driven. That is, the constitutive laws have the form

σ(t) = Eε(t)− E1ε1(t), (2)

where the internal strain is given by

ε̇1(t) +
1

τ
ε1(t) = c2ε(t), ε1(0) = 0, (3)

or equivalently,

ε1(t) =

∫ t

0

c2e
− t−s

τ ε(s)ds.

Several generalizations of this formulation exist, e.g., Johnson, et al., [43, 44], suggest that
the internal strain is strain rate driven, i.e.,

ε̇1(t) +
1

τ
ε1(t) = c2ε̇(t). (4)
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The Boltzmann-type law (1) (under appropriate assumptions on the past memory from −∞
to 0) corresponds to an internal strain model of the form

ε̇1(t) +
1

τ
ε1(t) =

d

dt
gv(ε(t), ε̇(t)), ε1(0) = 0. (5)

This form is often chosen since one finds that neither (3) nor (4) provide laws that readily
describe experimental data, especially in the cases of filled elastomers, biotissues and other
molecular polymers.

3 Fung’s Quasi-linear Models

Fung, in his extensive efforts [38] with biomechanics and biotissue, develops and presents the
quasi-linear viscoelastic constitutive equation

Sij(t) =

∫ t

−∞
Gijkl(t− τ)

∂S
(e)
kl [Ē(τ)]

∂τ
dτ, (6)

where Sij is the Kirchoff stress tensor, Ē is the Green’s strain tensor, Gijkl is a reduced

relaxation function, and S
(e)
kl is the “elastic” stress tensor. For the scalar components Gijkl,

Fung proposes the reduced relaxation function G(t) given in the form

G(t) =

{
1 + C[E1(

t

τ2

)− E1(
t

τ1

)]

}
[1 + c ln(

τ2

τ1

)]−1. (7)

Here E1(z) =
∫∞

z
e−t

t
dt, C represents the degree to which viscous effects are present, and τ1

and τ2 represent fast and slow viscous time phenomena. We note that the internal strain
variable formulation (2), (5) is equivalent to the constitutive relationship proposed by Fung
if one considers an approximation of the relaxation function G by a sum of exponential
terms. Various internal strain variable models are investigated in [3] and a good agreement
is demonstrated between a two internal strain variable model (e.g., of the form σ = Eε −
E1ε1 − E2ε2) and undamped simulated data based on the Fung kernel G.

Since its introduction, this quasi-linear viscoelastic (QLV) theory of Fung has been ap-
plied successfully in stress-strain experiments to several types of biological tissue. A benefit
to using (6) as a constitutive equation is that, unlike simpler models for viscoelasticity, it
allows for the consideration of a continuous spectrum (e.g., see the discussions in [38]) of
relaxation times and frequencies (this is also true of the probabilistic-based internal variable
approach developed in [23] and described below). (The need for a continuum of relaxation
times in certain materials was observed many years ago [36, 63, 66, 70].) While Fung’s
theory has been successfully employed for fitting hysteretic stress-strain curves, for control
applications one is interested in using it in a full dynamical model. Unfortunately, the QLV,
as presented by Fung, leads to exceedingly difficult computations within full dynamical par-
tial differential equations, especially in estimation and control problems. This motivated
the development of the internal variable approach described in [3, 23, 48] (which permits
discrete approximation to a continuum) in attempts to approximate well the correspond-
ing dynamic responses even in cases where the stress-strain curves alone do not produce
adequate approximations – see [38].
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The probabilistic based internal variable alternative [23] to Fung’s kernel involves a pa-
rameter dependent kernel with a continuous distribution of parameters and internal variables.
In the case of a finite combination of Dirac δ distributions, one obtains a finite summation of
exponential functions as the approximation kernel (see the discussions below). This method
can be extended to allow for consideration of a continuous spectrum of relaxation times
and frequencies by utilizing absolutely continuous parameter distributions in place of the δ
distributions.

4 Internal Variables

The internal variable approach to overcome both conceptual and computational challenges is
consistent with the belief that hysteresis is actually a manifestation of the presence of multi-
ple scales in a physical or biological material system that is frequently modelled (and masked)
with a phenomenological representation such as an hysteresis integral for the macroscopic
stress-strain constitutive law. The internal variable modelling leads to an efficient compu-
tational alternative for the corresponding integro-partial differential equation models. In
addition, it provides a “molecular” basis for the models (for a comparison of models of vis-
coelastic damping via hysteretic integrals versus internal variable representations, see [22]
and the references therein).

Our own interest in viscoelasticity in polymeric materials has been motivated by projects
in our Industrial Applied Mathematics Program with at least two of our industrial partners:
The Lord Corporation and Medacoustics, Inc. The collaborations with polymer scientists
and engineers at Lord involved the dynamic modelling of filled rubbers which experimen-
tally exhibit both significant hysteresis and nonlinearity in tensile and shear deformations as
depicted in the sample stress-strain curves in Figure 1. The efforts with engineers at Meda-
coustics used some of the viscoelastic models we have investigated in attempts to understand
the propagation of arterial stenosis induced shear waves in composite biotissue in a sensor
development and characterization project.
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Figure 1: Experimental stress-strain curves for (1) unfilled, (2) lightly filled and (3) highly
filled rubber in tensile deformations.
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In some of our earlier efforts [24, 25], the models for hysteretic damping in elastomers
employed a phenomenological Boltzmann-type constitutive law of the form (1). As explained
in [20, 24], our nonlinear materials undergoing large deformations required the use of finite
(as opposed to infinitesimal) strain theories [61]. However, since the nonlinearity between the
stress and finite strain is an unknown to be estimated (using inverse problem algorithms) and
since the finite strain can be expressed in terms of known nonlinearities as a function of the
infinitesimal strain (at least in the problems of interest here), one can effectively formulate
the problem as one of estimating the unknown nonlinearity between stress and infinitesimal
strain (see [24]). Hence one can develop models for stress in terms of infinitesimal strain. Our
previous efforts as summarized in [20, 21] have shown, through comparison with experimental
data, that the best fit to filled elastomer data occurs when ge and gv are cubic, along with Y as
a distribution of decaying exponentials. We subsequently [18, 19, 20, 21] developed nonlinear
models based on stick-slip “molecular” ideas of Johnson and Stacer [43] and Doi and Edwards
[34] which resulted in a form for ge, gv and Y in (1) that matched the empirical findings
reported in [20, 24, 25]. These models allow for multiple relaxation times present in polymer
strands of composite materials within a virtual compartmental model of entangled chemically
cross-linked/physically constrained system of long chain “molecules”. While accounting for
multiple relaxation parameters, these models do not include physically or chemically based
parameters in representations of the polymer strands.

We mention briefly two recent advances: (i) a new constitutive model [10] that has
been developed which combines the virtual stick-slip continuum “molecular-based” ideas of
Johnson and Stacer [43] with the Rouse bead chain (see Figure 2 below) ideas as described
in Doi and Edwards [34]; (ii) a two dimensional version [14, 15, 50] of a model that accounts
for stenosis driven shear wave propagation in biotissue.

5 A Stick-Slip/Rouse Hybrid Model

The early models and the nonlinear extensions of the Boltzmann law did not provide insight
into the underlying mechanisms for tensile and/or shear deformations in filled rubber or
biotissue. This is not unexpected since the approaches described above are based on pseudo-
phenomenological formulations. We then [19, 20, 21] turned to a different approach based
on molecular arguments which, as we shall see, lead precisely to the class of models based on
a Boltzmann hysteresis formulation. As usual, one begins with force and moment balance
and seeks constitutive laws for the viscoelastic stress term σvisco in

σ(t; τ) = σelast(ε, ε̇) + σvisco(ε1(·)),

where ε = ∂u
∂x

is the infinitesimal strain and ε1 is an “internal strain” variable on which σvisco

depends in an hysteretic manner. As described above, we found that a reasonable description
of the data of interest could be given with the typical stress-strain relationship

σ(t) = ge(ε(t), ε̇(t)) +

∫ t

0

γe−
t−s
τ

d

ds
gv(ε(s), ε̇(s))ds, (8)
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where τ is a relaxation parameter, gv is defined with cubic polynomials and ge = ge(
∂u
∂x

) +

CD
∂2u
∂t∂x

. We have already observed that this expression is equivalent to

σ(t) = g̃e(ε(t), ε̇(t)) + γε1(t; τ),

where, for a given “relaxation parameter” τ, the internal strain ε1(t; τ) satisfies (5). In
fact, we found that highly filled rubbers required multiple relaxation times τ1, τ2 in an ap-
proximation to (7) to obtain good model fits to the data. As one might expect, molecular
based formulations, where microscopic relaxation parameters vary across the population of
molecules in the material, lead to internal dynamics of the form (5),(8) that involve multiple
values of τ . When combined with a Prohorov metric framework (see [4, 6]) for uncertainty in
internal dynamics, these ideas lead to the computational models we have used. Indeed, the
molecular based approach leads to a general class of models with uncertainty or randomness
in the stress

σ(t, x; P ) = g̃e(ε(t, x), ε̇(t, x)) + γ

∫

T
ε1(t, x; τ)dP (τ), (9)

where P is a probability distribution over the set T of possible relaxation parameters, and
ε1(t; τ) satisfies, for each τ ∈ T ,

ε̇1(t, x; τ) +
1

τ
ε1(t, x; τ) = ε̇(t, x)h(ε(t, x)).

For the reptation model derivation in [19], one begins with the Doi/Edwards [34] stick-slip
molecular models as embodied in the continuous tube reptation models of Johnson/Stacer
[43] wherein polymer materials such as rubber are postulated to be composed of two types of
molecules. In tensile deformations, one denotes by L(t) the length of chemically cross-linked
or CC molecules, while `(t) denotes the length of physically constrained or PC molecules.
To use stick-slip models in continuum simulations of reptation in rubbers, one considers
networks of “cells” or boxes of parallel-sided CC boxes and PC boxes with sides of length
(principal stretches)

λc = 1 + ε = 1 +
∂uc

∂x
, λp = 1 + ε1 = 1 +

∂up

∂x
,

respectively. Here uc denotes the deformations of the CC box and up denotes the defor-
mations of the PC box. Using a linear stick-slip assumption as in [43], and strain energy
densities based on experiments of Young and Danik (see [18, 20] for details), one obtains as
a limit of PC response to step tensile deformations of the CC molecules, the ε, ε1 coupled
dynamics

ε̇1 +
1

τ
ε1 = ε̇

1 + ε1

1 + ε
.

However, if one replaces the linear assumption of [18] by a nonlinear stick-slip hypothesis
(which is the basis of the work in [19]), one obtains a more general nonlinear, dynamical
relationship between ε and ε1 given by

ε̇1 +
1

τ
ε1 = ε̇f((1 + ε1)/(1 + ε)).
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Expansion and truncation of higher order terms lead to equations of the form

ε̇1 +
1

τ
ε1 = ε̇(α0 + α1ε + α2ε

2 + α3ε
3), (10)

which are of the same form as the internal variable model (5),(8) with gv a cubic polynomial.
For the corresponding contributions to σ from the strain energy densities of Young-Danik/
Johnson-Stacer with the nonlinear stick-slip hypothesis, one obtains a contribution to the
rate independent strain gs

v (after expanding f in a Taylor series and dropping higher order
terms) of the form

gs
v(ε, ε1) = gcubic(ε) + γ1ε1,

where ε1 is as before (i.e., the internal strain satisfying (10)). Thus, the total stress-strain
relationship can be written in the form (9). If the measure P of (9) has atoms at τ1 and
τ2, (i.e., the measure is composed of Dirac measures concentrated at τ1 and τ2), then the
constitutive law leads precisely to the model

σ(t, x; P ) = g̃e(ε(t, x), ε̇(t, x)) + γ1ε1(t, x; τ1) + γ2ε2(t, x; τ2),

which was used in the data fits in [3, 20]. Further details on this modeling approach can be
found in [9, 21]

We next developed a new constitutive model which combines the “molecular-based”
ideas of Johnson and Stacer with the Rouse bead chain ideas and explained its relation to
the Boltzmann phenomenological models.

Figure 2: Representation of vectors for a bead-spring polymer molecule.

The new molecular-based constitutive model, in which polymer chains are treated as
Rouse type strings of interconnected beads (a reasonable approximation for many materi-
als), permits the incorporation of many important physical parameters (such as temperature,
segment bond length, internal friction, and segment density) in the overall hysteretic consti-
tutive relationship. Its form is similar to that developed in [19, 20] and does have the general
form (1) of Boltzmann type, even though the kernel is not of convolution type. The result-
ing model does, however, provide a molecular basis for the earlier pseudo-phenomenological
stick-slip models.

We give only a brief outline of the new constitutive model here; more details of the deriva-
tion can be found in the report [10]. We model a polymer material undergoing directional
deformation by assuming it is composed of two virtual compartments as depicted in Figure 3.
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Figure 3: PC molecule entrapped by the surrounding constraining tube.

One compartment consists of a constraining tube which is a macroscopic compartment con-
taining both CC (chemically cross-linked) and PC (physically constrained) molecules. The
other compartment is microscopic in nature and consist of those PC molecules aligned with
the direction of the deformation. These molecules will at first “stick” to the constraining
tube and be carried along with its motion, but will very quickly “slip” and begin to “relax”
back to a configuration of lower strain energy. In the model derivation one computes the con-
tributions of both “compartments” to the overall stress of this polymer material undergoing
deformations to obtain the constitutive law.

6 Stenosis-Driven Shear Wave Propagation in Biotis-

sue

Finally, we turn to recent results on the viscoelastic models for propagation of stenosis-driven
biotissue waves mentioned above. In the biotissue efforts [14, 15, 50], we employ an internal
variable formulation of Boltzmann type hysteresis laws to investigate the propagation of
stenosis generated waves in biotissue where it has been demonstrated that a viscoelastic
(as opposed to an elastic) formulation is important and that waves generated in a two-
dimensional cylindrical geometry with inner radius partial occlusions can be readily modelled
and simulated.

Specifically we have carried out efforts on two and three dimensional models that employ
an internal variable approach to model wave propagation. To motivate this, we recall [3]
that coronary artery disease (CAD) is caused by atherosclerosis, the gradual accumulation
of plaque along the walls of an artery. This buildup, known as a stenosis, restricts the flow of
blood, leading to a decrease in the oxygen supply to the heart muscle. It is well known that
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arterial stenoses produce sounds due to turbulent blood flow in partially occluded arteries.
In principle, turbulent normal wall forces exist at and downstream from an arterial stenosis,
exerting pressure on the wall of the artery which then causes a small displacement in the
surrounding body tissue. The goal is to model the propagation of the wave generated from
the stenosis to the chest wall, and ultimately, to create an inverse problem methodology
which can be utilized to determine the location of an arterial stenosis. In [14, 15, 50] we
also discuss comparison of the viscoelastic model to an elastic one as well as present typical
simulations for a biologically motivated example.
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